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I. Introduction.

Let Z(t) denote the number of cells alive at t in a critical age-
dependent Bellman-Harris branching process with cell lifetime distribution

G(t), G(0+) = 0, non-lattice and assume

(1.1) 2 (1-G(t)) 0 as t —»® .
1.2) 0<p =] tacee) <= .
0

Let the offspring generating function be denoted, for 0 < s <1,

(o]
(1.3) b(s) = = pksk
k=0
and
' R [ee]
(1.4) h((l)y=1= % kpk (criticality)
k=1
and
2 11 *®
(1.5) 0<o =h (1) = Ek(k-l)pk<°°-
=2

See [1] Chapter 4 for details.
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It is well-known that

(1.6) 1im tP[Z(t) > 0] = —2(5— =b .

t — o

Various‘pqoofs of (1.6) and the corresponding result for a critical
Galton-Watson or discrete time process have appeared. See [1] Chapters 1, &
for comments and references. For example, the proof of (1.6) in [2] uses the
renewal theorem. The proof in [1], Chapter 4, gives the asymptotic form for
a critical generating function, from which (1.6) is a special case, and
relates the generating function to that of a critical Galton-Watson process,
for which results are obtained. The proof given in this note is elementary

and self-contained.

II. Comparisons and Iterations

Definition. For 0<s< L t>0,

[ve)

(2.1) F(s,t) = & P[Z(t)=k]sk.
k=0

It is well-known (1], Chapter 4), and follows by the law of total

probability that
t
(2.2) ' F(s,t) = s(1-G(t)) + j h(F(s,t-u))dG(u) .
0
Using the fact that
(2.3) P(t) = P[Z2(t) >0] = 1-F(0,t),

then from (2.2) it follows that, by a Taylor expansion on h(s) about s=l,



t
(2.4) 1-P(t) = j h(1-P(t-u))dG(u)
0
and’
| t 0’22 2 ;
(2.5) 1-P(t) = j {1—P(t—u) + 7 P (t-u) + o(P (t—u))}dG(u)
0

Rewriting (2.5),
t 2 t
(2.6) P(t) = 1-G(t) + J P(t—u)dG(u)-g j Pz(t—u)dG(u)-+f(t)
0 0 4

where f£(t) denotes the remainder.
Lemma 1 ([1]) P(t):0.

Proof. A simpler and elementary proof will be given here. Clearly
(2.7) P(t) | C > 0.

Assume C>0. Split the integral on the right side of (2.5) into j =

/2 ot rt -2 0
J + I . ¥or large t, the integral J is o(t 7). Then it is clear that
0 t/2 t/2
. 0_2
(2.8) 1-C = 1—C-F§-C-+o(l),

which is a contradiction of C>0. This proves the lemma.

(2.9) Let 6™ (t) = n'® iterate of G evaluated at t.

Define the iterative sequences

2

ot
(2.10) Un+1(t) = J;h(Un(t—u)dG(u)

U (t) = 1.
(o)



. " .
= t~
(2.11) In+1(t) joh(In( u))dG(u)
1 ,t<T
1, (6 = b
. ]_—'E','L>T
for T > b.

Lemma 2 Under assumptions (1.1) - (1.5), for n >0, and all £ > T,

(n)

2.12) 0 <U_(6) - ¥(0,0) < ¢ (e
2.13) S 0<U (6) - T (0) < ™ (1)
(2.14) |t (-1 ()] < k(v),

where, for t — &,

(2.15) tk(t) — O.

Proof.  Eq., (212) holds for n = 0

Assume (2.12) for n. Then, omitting arguments,

i t
(2.16) 0<U_,,-F = joh(un)-h(F)dG < jo(Un-F)dG

t
_gf 6™ (t-wyag = ¢ ()
0

where the left inequality follows from the induction hypothesis and the

monotonicity of h, and the right inequalities from the mean value theorem, the
1

fact that h (1) = 1, and the induction hypothesis.

To show (2.13), observe that for t>T

o

(2.17) 0<u-I <2<1=060¢).

o o0



Assume (2.13) for n by induction. Then, arguing as in (2.16),

: t t
(2.18) 0<U_,-I . = fo(h(un)-h(ln))dc < féUn-In)dG

t
< Jp ¢ (t-uydee) = @ () .
o

To show (2.14) write Il(t) as

t/2 ot

(2.19) Il(t) =J‘ +J‘ h{(I (t-u))dG(u) .
0 /2. ©

t -2
Note that the second integral (I ) in (2.19) is o(t ) by (1.1).
' t/2 t/2
The first integral ( ) may be writtenm by a Taylor expansion of h(s) about
0

s =1 as (£t >>1T)

_ /2
(2.20) I,(t) = o(t 2 ‘fo h(1—£—a )dG (u)
_ t/2 ' 'y
=0ty 4] ) - o @ + 2627 W
0

+ o(t™%)} de(w)

1
Using h(1) = h (1) =1, and the expansion, 0 < u < t/2,

(2.21)

N S u, U
tou ot Q+t+°%))

in the right side of (2.20) yields
_ t/2 :
(2.22) I,(8) = o(t 2y ra(t) -;f (1+%+o(%) ) dG(u)
0

2,2

£/2
X [T o™} acw)
2t o

as again by (1.1), an integration by parts yields

(a0}

(2.23) f udGu) = o™y,
.



It follows that

(2.24) L (e) = I () + £(£)
where
(2.25) | 0< [f()] < k<o

and as t — «,

(2.26) 26 (e) - 0.

Then one may write

T
(2.27) 1,(t) = Joh(IO(t—u)-l-f(t—u))dG(u)

t
> | {h(ry () en (1 (E-u)) £ (t-w) JaG ().
0

Note that for t >> T,

(2.28) I,(1) = Joh(IO(T—u))dG(u)
and
(2.29) , h(1-6)6(T) < I,(T) < h(l - —;—)G(T),

for some a > 0, ¢ > 0,

t
(2.30)  I,(t) < Jr {h(IO(t—u) + 1 (max{h(1 - 2)G(T),1 - Y})£(t-u)}dG(u)
0 T t

for some a > 0, v > 0.



For all t > T, (2.27) - (2.30) yield that

t
(2.31) |L,(0-1,(0] < a - %)fof(t-u)dc(p).

Hence, repeating the argument of (2.27) - (2.31),

t
(2.32) |, e-1,m] < @ - H? jof(t-u)dc(z) W),
where
(2.33) 0 < o is a constant.

An induction yields that

(2.34) | lln(t)-xo(t)i < (- %)'q'f*cu')(t) = k(t),
< E=O

where "' denotes the usual convolution integral.

The right side of (2.34) is now broken up into a number of parts, and

upper bounds for each part is obtailned.

2
t @
(2.35) K(t) = % + % (1 - %)‘af*G('q')(t).
2=0 2
2=t~
Sinee
(2.36) lfl*kGu’)(t) <K

the second term of (2.35) is dominated by

3 ; .. -at
(2.37) Ry (1-HtXee
2 t o
=t



The first term on the right of (2.35) is now written as

2
t
2.3 = a- DM
4=0
2

5 ;(1——)2[Jt ~t/fn t

t ) .-
J f(t—u)dG(z)(u)j.
t-t/4n t :

The first term on the right side of (2.38) is bounded above by

N t2

(2.39) ' = d<L@llQ:> = o(t™hy,

by the asymptotic behavior of £ and summing the geometric series.
The second term on the right side of (2.38) is split into the

three terms, ignoring distinctions between [c] and «c,

Jtlin t t 4n t t2 t 0
(2.40) = + PN + pH I £(t-u)dG ().
£=0 =/t /i4n t f=t fn t “t-t/4n t

Since lf} < 1, Chebyshev's inequality yields

t
(2.41) [ le(e-w) |ae™® ) < 2l 5
t-t/4n t (t-t/fn & - 4p)
where
(2.42) 0<a’-= j (t-p) 2aG () .

An application of (2.41) to the first term of (2.40) yields

Jtl/in t .t '
(2.43) | = ] £(e-uyac® ()| < —E—

2=0 t-t/4n t t(4n t)2

for some B > 0.



The Central Limit theorem may be applied to the seccnd and third terms
of (2.40) since the summation index £ is large.

For £ >/t/4n ¢,

2.48) ¢B ey - 6P (e-e/m o) ~ 8l - @(t”tiz}j — Ay

Applying (2.44) to the second term of (2.40) and using the mean value

theorem and

. 2
(2.45) 9(g) = —— 75 /2
‘ Vom,

yields

t in t t

(2.46) £(e-uyac )

2
=/tfin t “t-t/4n t

t 4n t -0 .
= za/t§zn tw(a,/])(a(zn V4

-t/2 fn t 2t3/2
e £ (._—.___

=3 a fn t

)s

where C 1s a positive constant. -
The Central Limit theorem is applied to the third term of (2.40), and

since the arguments are large, use will be made of the standard approximation
(2.47) 1 - 8(x) ~£— 0 (x)

for some B > 0, as x — =,
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Applying (2.44) and (2.47) to the third term of (2.40) yields
2
t

2 .
4=t In t “t-t/gn t

t

(2.48) £(e-u)ac ) (u)

2
£ t= 0 a /4 _ a\/E]

< pX : )
- Bg=t o0 tq a/p t-t/4n t - fu  t-gp

proCELELEY oy (e/n &) | -6t gn ¢

<
= 42 STt
'

Now (2.37), (2.39), (2.43), (2.46), (2.48) applied to (2.34) yield

that for all sufficiently large t, equation (2.14) holds.

Theorem 1. Under assumptions (1.1) to (1.5)

(1.6) lim tP[Z(t) > 0] = b.
Lt —»
Proof. Combine (2.12) - (2.15) to yield
(2.49) 2z > 01 - 2| <¢™ (o) + ote™.

Let n —» ». The weak law of large numbers yields the result.

III. Extension. The result of Theorem 1 can be strengthened by the

method.

Theorem 2. Under the assumptions (1.2) - (1.5) and in addition, for t — o,

(3.1) £2(1-G(t)) - 0



11

and
(3.2) h3 1y < =,

then for t large,

(3.3) P{Z(t) > 0] ~ % + s_&%_g

t

for some unspecified constant c.

Remark. Conditions (3.1) and (3.2) are not as stringent as in [2], where

more terms in the asymptotic expansion of P(t) are given.

Outline of Proof.

Define
t .
(3.4) . 3, (0 = foh(Jn(t-u)dc(u)
1, t<T
J.(t) =
0 ;- b _ & fn t, £>T

t 2

t
for T >> b.

As in the proof of (2.13) one obtains
(3.5) 0<U (8) - I (6) < ™ ey,

An expansion of h about 1 to four terms in the Taylor expansion

yields that

(3.6) () = 3 (0) + o(t™).



12

From this and a similar tedious sequence of estimations as in Theorem 1,

one obtains
(3.7) 1Jn(t)—Jo(t)1 < c(“)(c) + o(t™2)

and again one lets n —» « and applies the weak law of large numbers to complete

the argument.



13
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